A Probabilistic Trust Model

Gareth Karl

Department of Computer Science, University of Auckland

Abstract: An identity certificate is a digitally signed certificate that binds a public key to
information about the alleged holder of that key. Guaranteeing the authenticity of identity
certificates is an open problem in Public Key Cryptography. Public Key Infrastructures
(PKIs) are designed to distribute identity certificates and provide users with some degree of
trust in their authenticity. All PKIs are based on one or more of three trust models: the Web
of Trust, hierarchical trust and trust lists. I focus on the Web of Trust. Probabilistic
reasoning is an approach to reasoning with uncertain information. Probabilistic reasoning’s
ability to handle uncertain information makes it an obvious candidate for inclusion in PKIs. I
consider the benefits and disadvantages of a probabilistic version of the Web of Trust, with
particular reference to a scheme described by Maurer. Finally, I assert that Pretty Good
Privacy (PGP) is an example of a PKI that is well suited to a probabilistic Web of Trust.

1 Cryptography and Public Key Infrastructures
1.1 Conventional Cryptography and Public Key Cryptography

Cryptography is the study of how to communicate secretly when an adversary can monitor your
communication. Prior to the 1970s all cryptographic techniques were reliant on the sender and the
receiver already sharing some secret information. These techniques are known as symmetric
encryption. The secret information is called the key, while an unencrypted message is called
cleartext, and an encrypted message is called ciphertext. When using any symmetric encryption
algorithm, the cleartext is encrypted with a function (let this be f) and unencrypted with its inverse,

so f(cleartext, key) = ciphertext and f~ (ciphertext, key) = cleartext.

Public key cryptography was first proposed by Diffie and Hellman in 1976 [1]. It does not require
that two parties share secret information in advance. This is because it includes two keys: the public
key that anyone may know and the private key that one party must keep secret. Public key
cryptography uses asymmetric encryption algorithms that are based on a type of one-way function
known as a trapdoor function. A one-way function is a function that is easy to compute but whose
inverse is hard to compute. A trapdoor function is a one-way function whose inverse is easy to
compute if some additional information is known. This additional information is the private key.
Let f again be the encryption function and let g be the decryption function. Then, f(cleartext,
public key) = ciphertext and g(ciphertext, private key) = cleartext. A private key can also be used to
digitally sign a document so that anyone with the corresponding public key can verify that it was

signed by that private key. The entity that knows the private key is referred to as the key holder.



1.2 Identity Certificates and Public Key Infrastructures

If a message is encrypted with a public key, complexity theory gives us reason to believe (but not
proof) that only someone who has the corresponding private key can decrypt the message using a
realistic amount of resources. Also, anyone with access to a public key can check whether a message
has been signed by someone who holds the corresponding private key. However, this leaves two
problems. Firstly, it is possible for more than one person to have knowledge of any particular private
key. The private key must be stored somewhere, and this leaves open the possibility that it may be
stolen. Secondly, you must know who the holder of the private key is in order to know who is
capable of decrypting or signing with it. A key holder may claim to be someone other than who they
are. Diffie and Hellman suggested a directory that listed all key holders and their public keys
[1, p.648]. Thus, knowledge of the problem of distributing public keys has existed for as long as
knowledge of public key cryptosystems themselves. An identity certificate is a public key that is
bound by digital signature to some information that helps identify the key holder. An entity trusts a
certificate if they believe that the entity identified by the certificate really is the key holder. An
entity can state that they trust a certificate by digitally signing that certificate.

This is one form of trust that is relevant to this study. The degree to which this trust is held will
depend on many factors including how the public keys are distributed. A Public Key Infrastructure
(PKI) is a means of distributing identity certificates that is intended to provide trust in these
certificates. A Certificate Authority (CA) is a widely trusted entity that is responsible for verifying
and signing identity certificates. They are often responsible for generating key pairs as well. An
anchor point is the initial trust in a public key that an entity has. This trust may have been gained
from personal transferal of a key or it may be based on widespread trust of a certificate. Anchor
points are linked to the identity certificates that the entity wishes to trust through certificate chains.
When discussing relationships in a PKI, the names of Alice (or A), Bob (or B) and Charlie (or C) are
often used to simplify explanations. Alice, Bob and Charlie are entities in the PKI and may or may

not be people.

1.3 A Taxonomy of Trust Models

All PKIs use a trust model to provide trust in the certificates they distribute. Linn has identified five
trust models so that PKIs can be classified according to the trust model upon which they rely [3].
These are subordinated hierarchy, cross-certified mesh, hybrid, bridge CA and trust lists models.
Linn makes an important point when he states that a PKI may be what he calls ‘multi-headed’,
meaning that it applies the arguments of more than one trust model [3, p.2]. A glaring omission from
Linn’s taxonomy is the Web of Trust. PKIs that are reliant upon the Web of Trust do not include
Certificate Authorities and instead take a distributed approach to verifying identity certificates. In its

simplest form, the Web of Trust (incorrectly) states that if Alice knows Charlie’s public key and



Charlie has signed Bob’s identity certificate, then Alice can trust that certificate. In other words,
Charlie’s key is the trusted anchor point and the certificate chain can consist of any identity

certificates that have been signed by already trusted keys.

Linn’s subordinated hierarchy, cross-certified mesh, hybrid and bridge CA models can be grouped
together because they all rely on Certificate Authorities as the anchor point and on the hierarchical
nature of the model to provide trust in the certificate chains that are constructed. The subordinated
hierarchy model is hierarchical because it consists of a tree with a universally trusted CA at the root,
non-CA entities as the leaves and subordinate CAs in between. The other three models are
hierarchical because they are variants upon the subordinated hierarchy model with extra certification
between subordinate CAs to provide more flexibility. Some of these do not have universally trusted
root CAs. The trust lists model is quite different to all the other models because it relies on having
lots of anchor points to provide trust in lots of certificates instead of using long chains or dense trees.
The best example of a trust lists model is a modern web browser because it has a large set of keys
built into it. This leaves three types of trust models: the Web of Trust, hierarchical trust and trust

lists. I will focus on variants of the Web of Trust.

2 A More Precise View of Trust
2.1 Trust in Entities

Another form of trust (besides trust in a certificate) that is relevant in a PKI is trust in an entity. This
is trust that a particular entity has a particular characteristic, such as the ability to make a payment or
a responsible approach to signing identity certificates. The second of these characteristics is
particularly important to the analysis of PKIs and trust that an entity has this characteristic is the only
form of trust in an entity that is discussed in this paper. The closest Alice can come to being
absolutely sure that a certificate binding Bob to a public key is correct is to have Bob verify the
certificate in person by providing the public key (or a unique hash of the key). This is the personal
transferal that I mentioned in section 1.2. However, this approach is impractical when Alice and Bob
are geographically separated or do not know each other personally. It is also impractical if Alice
wishes to know the public keys of many entities or many entities wish to know Bob’s public key.
This is why a PKI must rely on some variant of the trust models that I have outlined. There is no
convenient means of generating trust in public keys without trust models. All of the trust models

make use of trust in entities, although the trust lists model does not use it as much.

2.2 Improving the Web of Trust with Recommendations

The simple Web of Trust model is flawed because trust in a certificate that binds an entity to a public

key should not imply any trust in that entity. Although it may sometimes be acceptable to trust all



entities in a certificate chain from a hierarchical PKI, this is not true of the Web of Trust. The Web
of Trust can be improved by requiring trust in entities to be stated explicitly. The improved Web of
Trust is useful if Alice knows from previous experience that Charlie is very cautious about signing
certificates and therefore trusts certificates signed by Charlie (for simplicity, Alice trusts Charlie). If:

1) Alice trusts Charlie; and
2) Alice trusts a certificate that binds Charlie to a public key (call this K¢); and
3) there is a certificate signed by K¢ that binds Bob to another public key (call this Kg);
then:
Alice can trust the certificate binding Bob to K.

In essence, Charlie has recommended the certificate that binds Kg to Bob. Since Alice trusts
Charlie’s recommendations, she is willing to encrypt a message intended only for Bob using Kp and
send it over an insecure channel. Also, she is confident that anything signed by the private key
corresponding to Kg was signed by Bob. It is important to note that this does not imply that Alice
trusts Bob. Therefore, Alice does not trust a certificate that has been signed by this private key since
Bob may sign inaccurate certificates. If Alice wishes to trust such a certificate, Alice must trust
Charlie not only to recommend the certificate that binds Kg to Bob, but also to recommend Bob
himself. For Alice’s part, this is quite a leap of faith. However, it could potentially result in a large
increase in the number of certificates that Alice trusts. If:

1) Alice trusts Charlie to recommend other entities; and
2) Alice trusts a certificate that binds Charlie to a public key (call this Kc¢); and
3) there is a certificate signed by K¢ that binds Bob to another public key (call this Kg); and
4) there is a recommendation signed by K¢ that Bob should be trusted;
then:
Alice trusts Bob.

This idea can be built up recursively, with the next step being that Alice trusts Charlie to recommend
Bob’s recommendations. Each step is less likely to be justified than the previous and results in Alice

trusting more certificates.

2.3 A Meaningful Measure of Trust?

Trust is rarely absolute since people trust many things, but often only to some extent. [ alluded to
this in section 1.2, when I mentioned degrees of trust. Even though trust clearly comes in differing
degrees, it is not easy to describe these degrees in a meaningful and non-arbitrary way. The first step
towards defining meaningful degrees of trust is to decide what it means to trust one entity more than
another. There are two possible meanings of ‘Alice trusts Charlie more than Bob’ that stand out:

(a) Alice trusts Charlie with everything that she trusts Bob with and more.
(b) Alice thinks her trust in Charlie is less likely to be mistaken than her trust in Bob.

I have already touched upon (a) by discussing recommendations that are built up recursively. It
seems intuitive that if you trust Charlie to recommend other entities as trustworthy certificate signers

then you would also trust Charlie to sign certificates himself. After all, he could always just



recommend himself. In order to avoid confusion, this will be referred to as levels of trust. This idea
only works because we are considering a trust that is recursive. Otherwise, it would be possible for
Alice to trust both Charlie and Bob with things that she does not trust the other with. Then the two

trusts would be incomparable.

However, this paper is primarily about (b) and how to measure it. It is far from obvious that a
meaningful scale that is based on (b) could be devised. For example, the four levels of trust that are
used by Pretty Good Privacy (described in section 4.2) could be given the values 0, 1, 2 and 3,
however this is a totally arbitrary scale since we don’t know how much more ‘trustworthy’ 0 is than
1 (or 1 than 2, et cetera). Suppose that a meaningful scale could be devised, then the next step would
be to find a method of calculating a trust value on that scale from some other trust values on the
scale. This would be a calculus of trust values. This calculus would be useful to anyone wanting to
understand or manage the risk of wrongly trusting certificates that is inherent in the use of PKIs.
Different amounts of trust measured by such as scale will be referred to as degrees of trust. Maurer
assumes the existence of a meaningful scale by treating degrees of trust as being probability values
from a ‘well-defined random experiment’ [4, p.3]. This allows him to calculate the degree of a trust
that resulted from reasoning of the type described in section 2.2. Since Maurer’s degrees are

probability values, they are on a scale from 0 to 1.

3  Maurer’s Probabilistic Trust Model
3.1 A Deterministic Model of Reasoning with Trust

Before Maurer can describe the nature of the calculus that he performs on measurements of trust, he
has to formalize a method of reasoning about trust relationships similar to that which I described.
Initially, he describes a deterministic model (one that considers all statements to be either definitely
valid or definitely invalid). He does this by defining four types of statements and two inference

rules. Maurer defines his statements as follows [4, p.9]:
Definition 3.1. Statements are of one of the following forms:

— Authenticity of public keys. Auts x denotes Alice’s belief that a particular
public key Py is authentic (i.e., belongs to entity X) and is represented
graphically as an edge from A to X: A——X.

— Trust. Trusty x 1 denotes Alice’s belief that a particular entity X is trust-
worthy for issuing certificates. Similarly, her belief that X is trustworthy for
issuing recommendations of level § — 1 is denoted by Trust 4 x ;. The symbol
is a dashed edge from A to X labelled with the trust level: A-_t_,. X.

— Certificates. Certy y denotes the fact that Alice holds a certificate for ¥'s
public key (allegedly)? issued and signed by entity X. The symbol is an edge
from X to ¥Y: X Y.

— Recommendations. Recx y,; denotes the fact that Alice holds a recommen-
dation of level i for entity ¥ (allegedly) issued and signed by entity X. The
symbol is a dashed edge from X to Y labelled with i: X -1 V.




? We use the word “alleged” because without verification, there exists no evidence that
the certificate was indeed issued by the claimed entity.
He defines his inference rules as follows [4, p.10]:

Definition 3.2. A statement is wvalid if and only if it is either contained in
View4 or if it can be derived from View 4 by applications of the following two
inference rules:

HX,Y: .."-i't.l',fd,_;{, Trwi.d,.’(_.l: Gﬁ'f‘:{?y - ﬂufﬂ_‘y (]}I

and
VX,Y,i>1: Autgx, Trusta x i1, Reexyi b Trustay,. (2)

View, is the set of all statements that Alice initially considers valid. View, is the closure of View,

under rules (1) and (2), so Alice should consider all statements in View, to be valid. There are two

more inference rules that state that a trust in an entity to particular level implies trust in it to all lower
levels. This is not necessary since any consistent View, would include these lower levels anyway.

Maurer includes them to make his examples less complicated.

3.2 A Probabilistic Approach to Trust Measurement

Maurer extends his deterministic model into a probabilistic model in order to use the probability of a
statement as a measure of trust. Let S be a statement for which Alice requires a trust measurement.
This is likely to be a statement of the form Aut,p, but there is no reason why the model is less

suitable for measuring the other three types of statement. Let P(X) be the probability that X is true.

In the probabilistic model, the measurement of the degree of trust of S is P(S e View,). This is
referred to as the confidence value of S. This is to differentiate it from P(S € View,), which is the

result of the aforementioned ‘well-defined random experiment’ [4, p.3]. The probability that a

derived statement is in View, is calculated using probabilistic logic.

The calculation of P(S € View,) is reasonably straightforward and is described on pages 15 to 18 of
[4]. S, is defined as the set of all statements that Alice considers could be in View,. Initially all that

is P(se View,), for each s € S4. Let M be the set of minimal subsets of S, that could be used to
derive S. For each X € M, P(X cView,) can be determined from {P(xe View,):xe X}.
Similarly, P(3X e M : X < View,) can be calculated from {P(X € View,): X € M}. This method
of calculating the confidence value of S (namely, P(S e W)) guarantees that it will be greater

than or equal to P(S e View,). For an explanation of probabilistic reasoning, see Appendix A.



3.3 Assumptions and Weaknesses in Maurer’s Scheme

Superficially, Maurer’s paper appears to produce the far-reaching result of a meaningful trust
measure that can be applied to all PKIs. However, his approach has a number of weaknesses that
mostly result from assumptions he makes in his model. Only one of these assumptions was implicit.

His model could still be useful in any particular PKI if it tends to conform to the assumptions made.

3.3.1 Measuring Initial Trust Statements

Probabilistic logic allows the probability values of certain statements to be calculated from the
probability values of certain other statements. Therefore, the probability values of some statements
must already be known. Furthermore, the calculated values will be inconsistent if the values used to
calculate them are inconsistent. In the case of Maurer’s trust model, the values that must be known

initially are P(S e View,), for each s € S4. However, Maurer does not provide a means of

measuring these initial values. Therefore, the entire scheme is reliant upon Alice’s ability to
accurately measure or estimate the probability that her trust is well founded for each statement in her
initial view. These probabilities must have the characteristics of a well-defined random experiment.
The scheme is equally reliant upon the ability of other entities that provide Alice with

recommendations to make similar measurements or estimations.

Maurer’s scheme does make progress towards meaningful trust measurement. It provides a means of
deriving trust values for statements that have been inferred (possibly from statements made by more
than one entity) using only the trust values of statements that were directly asserted. Sometimes it is
easy to provide reasonable estimates of the trust values of statements in the initial view. For
example, if Bob gives Alice a disk with a public key on it and tells her that it is his public key (all of
this happens face to face) then Alice can confidently give Aut,p a trust value very close to 1.
However, it is often far more difficult to work out trust values. Consider the statement Trust,p ;.
The only way to work out a trust value for this that is appropriate for a probabilistic scheme such as
Maurer’s would be to consider Bob’s previous recommendations. If Bob has not made many
previous recommendations then a reasonable trust value would not be attainable. This is probably
not a major drawback since Alice is unlikely to want to use recommendations from someone without

a track record.

Suppose that Bob has made many recommendations. It still may not be easy to tell how accurate
these recommendations were.  Even supposing that Alice knows how many of Bob’s

i Number of Accurate Recommendations )
recommendations are accurate, may not be an appropriate

Total Number of Recommendations

trust value. Other factors may affect the trustworthiness of Bob’s recommendations (such as how

well he knows the supposed key holder). This problem is not specific to Maurer’s scheme but is



inherent in probabilistic reasoning and therefore will effect any scheme for measuring trust that is

based on probabilistic reasoning.

3.3.2 Independence of Trust Statements

Maurer also explicitly assumes that the trust values of the statements in Alice’s initial view are
independent. Of course, in reality this is unlikely to be the case. For example, if Bob and Charlie
work for the same company, then the trust value of Recp x; is likely to be lower if Reccx; is known
to be invalid than if it is known to be valid. However, future probabilistic schemes may be able to
include such dependencies. A model that includes n entities could have at most n-(n-1)/2 pairs of
entities. It may be possible to develop a rule for calculating the probability of one statement given
that another is statement is true. These rules would use the independence values associated with the
pairs of entities that are included in the two statements. A different rule for each combination of
statement types would probably be necessary. If these rules were effective, it would be possible to
model the interdependence of the statements in Alice’s initial view while maintaining tractability.
Then Bayes’ Rule could be applied to calculate trust values (see Appendix A for an explanation of
Bayes’ Rule). It should be noted that Maurer’s scheme successfully handles interdependent

certification paths (as opposed to interdependent entities) [4, p.].

3.3.3 Holders of Multiple Key Pairs

Maurer’s statements and inference rules implicitly assume that any particular entity has only one key
pair. In fact, it even assumes that every entity is (correctly or incorrectly) bound to at most one
public key. This simplifies Maurer’s notation but makes his model less useful since entities may
have multiple private keys that they use for different purposes or treat with differing caution. Rather
than stating that ‘a certificate was allegedly signed by Bob’, it is both more accurate and allows more
flexibility to say that ‘a certificate was signed by Kg, which is allegedly Bob’s private key’. This is
well demonstrated by El Bakkali and Kaitouni’s [2] approach to trust reasoning in PKIs. Their
scheme is deterministic and based upon Predicate Calculus. Their inference rules are far more
complicated. This is partly a result of the inclusion of policy constraints in their reasoning but it is
also partly a result of their inclusion of keys (not just entities) as parameters in all of the appropriate

relations. The pay off is that their model better approximates an actual infrastructure.

3.3.4 Comparing Trust Measurements with Policy Constraints

El Bakkali and Kaitouni intend that Alice’s choice of policy constraints govern whether or not she
should have confidence in a certificate. Taking such an approach, instead of trying to measure or
calculate trust values (based on probabilistic logic or otherwise), has both benefits and
disadvantages. An obvious disadvantage is that it does not take into account the uncertainty that is
inherent within all PKIs because entities are being expected to trust second hand information. As

with all predicate calculus, it treats statements as either definitely true or definitely false. The



compensation is that the policy constraints approach is more nuanced than the probabilistic approach.
Maurer cannot model some things that El Bakkali and Kaitouni can. For example, El Bakkali and
Kaitouni allow Alice to specify that Bob’s recommendations are only trusted if the recommended
entity is within a particular domain (perhaps because Bob is more familiar with entities within that
domain), but Maurer could not do this. On the other hand, Maurer can represent some of the
restrictions that are modelled by El Bakkali and Kaitouni. For example, a maximum path length of n
could be enforced by giving all initial statements of the form 7rustxy; a trust value of 0 if i > n-1.
Future probabilistic approaches could be made more nuanced by complicating the statements and

axioms upon which they are based.

El Bakkali and Kaitouni claim that their use of policy constraints instead of trust values makes it
easier to understand statements made in their scheme [2, p.368]. This is true for the trust value of a
single statement on a non-meaningful scale since one value on such a scale cannot be understood to
mean anything in particular. Values for at least two statements made by the same entity are required
and even then the only understanding is relative (for example, Alice trusts Bob more than Charlie) if
the scale is not meaningful. However, I dispute this for trust values on a meaningful scale. In
particular, a scale that accurately represents probabilities would be easy to understand and a great aid
to decision-making. On such a scale, Alice should trust a value of n (where 0 < n < 1) for a
particular statement if she is willing to accept that her trust in that statement will be misplaced about
n-x out of every x times. Since Maurer makes assumptions that are not always true, his scheme does

not reach this goal.

4  Pretty Good Privacy and Maurer’s Trust Model

4.1 An Introduction to PGP

This brief explanation of Pretty Good Privacy (PGP) summarizes part of the documentation for PGP
version 6.5.1 [5]. PGP is a system developed by Phil Zimmerman that incorporates a flexible PKI
along with the software required for the practicalities of Public Key Cryptography (PKC). It
includes both secure communication and digital signature. PGP recognizes two formats of

certificate; X.509 certificates and PGP certificates.

X.5009 certificates are supposed to conform to an international standard but in practice they have been
extended differently to add functionality for specific purposes and an X.509 certificate created for
one situation may not be applicable to another. Since X.509 certificates were specifically designed
for a hierarchical PKI, they may only be signed by the issuer, a Certificate Authority. An X.509
certificate consists of an X.509 version number, a public key, the unique distinguished name of the
key holder, the issuer’s unique name, a validity period and the algorithm used to sign the certificate
[5, pp.25-26].



In contrast to X.509, more than one person may sign a PGP certificate. It may also contain more
than one means of identifying the key holder. Instead of a signature applying to the key as a whole,
it applies to the binding of a specific form of identification and the key. People are identified in
different ways by different associates and this approach allows an entity to sign only those of the
users identities with which it is familiar. For example, a friend may sign the key holder’s nickname
and personal email address while a business partner may sign the key holder’s full name and
business email address [5, p.24]. A PGP certificate consists of a PGP version number, a public key,
one or more forms of identification of the key holder, a self-signature, a validity period and the key

holder’s preferred symmetric encryption algorithm [5, pp.23-24].

4.2 The Web of Trust in PGP

In PGP, users have the ability to specify whether or not a key is a trusted introducer (the PGP name
for a key whose signature is sufficient to provide trust in a certificate). This combines with the
flexibility of PGP Certificates to allow PGP to be used with almost any trust model. However, PGP
has traditionally been used with the Web of Trust. In fact, in the PGP 6.5.1 documentation it states
that the Web of Trust is the PGP view of trust [5, p.32]. The version of the Web of Trust that is
endorsed in the official PGP documentation [5] and that PGP certificates were designed for is not as
naive as the version discussed in section 1.3, but it is not as sophisticated as the version in section
2.2.

When discussing the hierarchical trust model, the PGP documentation calls the root CA a meta-
introducer (the PGP name for a key that can be used to nominate other keys as introducers).
However, it does not include meta-introducers in its discussion of the Web of Trust. In this respect,
it is better than the original version, since it does not rely upon all key holders being responsible.
However, it lacks any notion of levels of trust. Therefore, it cannot create trustworthy chains
containing more than three certificates (the entity who wants to trust a certificate, the entity specified
by the certificate and the trusted introducer who signed the certificate). This results in a model that
cannot provide trust in a large number of certificates and makes the use of the ‘six degrees of

separation’ metaphor [5, p.32] inaccurate.

The degrees of trust in PGP’s version of the Web of Trust are not very helpful. PGP has four of what
I have called degrees of trust (it calls them levels of trust). These are implicit trust, complete trust,
marginal trust and no trust. Implicit trust is the trust an entity has in itself. There is no clear idea of
how much trust complete trust or marginal trust are. It is only clear that a certificate must be signed
by one completely trusted introducer or two marginally trusted introducers to be considered trusted.
Presumably, ‘Alice completely trusts Bob’ does not mean that Alice knows with absolute certainty

that Bob will never sign an incorrect certificate, since Alice could never know this. It is more likely



to mean that Alice thinks the likelihood that Bob will sign an incorrect certificate is at least as low as
the likelihood she will. This would imply that ‘Alice marginally trusts Bob’ means that Alice
believes that the likelihood that Bob will sign an incorrect certificate is such that two entities with
this likelihood are as unlikely to independently sign an incorrect certificate as Alice alone is. If this
is the case, then there should be a countable infinity (the cardinality of the set of natural numbers) of
degrees of trust such that n signatures of degree n are required for Alice to trust the certificate. If this
is what is meant by marginal and complete trust, then the scheme is far less powerful than it could

be. Ifnot, then it is not clear what is meant.

4.3 Finding Maurer’s Assumptions in the PGP Trust Model

Section 3.3 showed that Maurer’s scheme is far from perfect. However, I believe that it is a better
Web of Trust model than that which is currently endorsed by PGP. This is because the PGP version
of the Web of Trust includes all the inaccurate assumptions and other problems in Maurer’s scheme
as well being unable to create trust in as many certificates and being less clear about the meaning of

its trust values.

As with Maurer’s scheme, PGP users must work out how much trust they have in a key. While the
imprecise nature of the three options in the current PGP scheme may make it easier to decide, this
imprecision is mirrored in the outcome that a statement is valid, marginally valid or invalid instead

of the continuous range of possible outcomes in the Maurer scheme.

There is an implicit assumption of the independence of statements in the current PGP trust model,
unlike Maurer’s explicit assumption. If Charlie has two keys, both of which are marginally trusted
by Alice, he can use both of them to sign a certificate and make Bob’s key valid from Alice’s
perspective. Or, more likely, two employees of the same company, both marginally trusted by Alice,
may sign a certificate. This would appear no different to two totally unrelated and marginally trusted

entities signing that certificate.

Both schemes overlook the possibility of one entity having multiple key pairs but this causes
different problems because Maurer defines trust with respect to entities but PGP defines it with
respect to keys. It is impossible to represent an entity with multiple key pairs in Maurer’s scheme.
As seen in the previous paragraph, the current PGP scheme can represent this but it produces

undesired results.

Neither scheme uses policy constraints. However, the unclear meaning and imprecision of the
current PGP trust statements make this scheme more vulnerable to El Bakkali and Kaitouni’s

criticism [2, p.368] as it was outlined in section 3.3.4.



4.4 Applying Maurer’s Model to PGP

Maurer’s model should be adjusted to handle a single entity that holds multiple key pairs. The

statements Autyx, Trust 4, Certxy and Recyy; should be replaced with Aut, , . , Trust, . ;,
Certy y yx, and Recy , . , respectively, where Kx is one of X’s keys and Ky is one of Y’s keys.

Similar adjustments should be made to the inference rules. This idea is based on El Bakkali and
Kaitouni’s approach [2]. Note that this change to the deterministic model would result in counter

intuitive results from the probabilistic logic. If Alice’s initial view included the statements Au?, , . ,
Aut, i, Trust g Trust v, Certyy o and Certy . then the trust value for Aut, ,
would be higher than if the initial view did not contain the statements Aut, . , Trust, . . and
Certy x v, - Therefore, a change from standard probabilistic logic would be necessary when the
two certification paths used different keys held by the same entity. For example, let S; = { Aut, , , ,
Trust,y ;> Certy vy tand S>={Aut, ., Trust,, . ., Certy, . }. The confidence value of

Aut ; .~ should be max(P(S;), P(S2) instead of P(S, US,)—P(S,NS,).

Having made this change, PGP would only have to be altered slightly to make it compatible with the
adjusted version of Maurer’s trust model. Replacing the PGP trust levels (implicit, complete,
marginal and no trust) with a degree of trust (a rational number between 0 and 1) and a level of trust

(a natural number) is all that would be necessary. These could be implemented as a 16 bit positive
. ) 1 . o
integer (treated as a multiple of F) and an 8 bit positive integer (treated as a natural number

between 0 and 255) respectively. This would allow sufficient precision for the degree of trust and far

more levels of trust than anyone would realistically be willing to use.

5 Conclusions

All public key infrastructures must be based on one or more of three kinds of trust model: the Web of
Trust, hierarchical trust and trust lists. The simplistic version of the Web of Trust assumes that all
entities in a public key infrastructure can be trusted, which is unlikely to be true in any
non-hierarchical public key infrastructure. The Web of Trust is only applied to non-hierarchical
infrastructures and therefore its simplistic version is not useful. More complicated Web of Trust

models overcome this by requiring trust in entities to be explicitly stated.

Trust in others is rarely absolute and so a measure of trust is helpful. A useful measure of trust will
have values with obvious meanings and a great many values to increase precision. It is possible to
design variants of the Web of Trust that calculate trust values on a continuous scale by using

probability as the trust value. Since the values are interpreted as probabilities they are meaningful.



It is possible to develop a calculus for probabilistic trust values using probabilistic reasoning. A
weakness of any probabilistic trust model is that it requires accurate initial trust measurements to be
made, and probably by more than one entity. Although this is possible for some trust statements, a
general approach to making initial probabilistic trust measurements has not been put forward. This is

the main obstacle in the way of probabilistic trust models.

Maurer has outlined a probabilistic Web of Trust model. His model assumes that all statements
about trust are independent and that entities are only bound to one public key. Neither of these
assumptions is true in general, but future probabilistic Web of Trust models may be able to avoid
making them. Maurer’s model also suffers from an inability to handle many specific restrictions that
users might want to put on certificates, such as stating that they are only valid in a particular domain.
This could be handled on an ad hoc basis but it would complicate the trust statements and inference

rules upon which the model is based.

Pretty Good Privacy combines a flexible public key infrastructure with the software that is needed
for public key cryptography. Maurer’s trust model, with one improvement, would be well suited to
PGP. A minor change would have to be made to PGP keys. This would be preferable to the current
Web of Trust model that is recommended for use with PGP. That model cannot provide trust in

many identity certificates and it is unclear what its types of trust are supposed to mean.

References

[1] Diffie, W., & Hellman, M. E. (1976). New Directions in Cryptography. IEEE Transactions on
Information Theory, 22 (6), pp.644-654.

[2] El Bakkali, H., & Kaitouni, B. I. (2001). A Predicate Calculus Logic for the PKI Trust Model
Analysis. In Proceedings of the IEEE International Symposium on Network Computing and
Applications (pp. 368-371). Los Alamitos, California: IEEE.

[3] Linn, J. (November 6, 2000). Trust Models and Management in Public-Key Infrastructures.
Retrieved April 11, 2003, from ftp://ftp.rsasecurity.com/pub/pdfs/PKIPaper.pdf

[4] Maurer, U. (1996). Modelling a Public-Key Infrastructure. In E. Bertino, H. Kurth, G. Martella
& E. Montolivo (Eds.), European Symposium on Research in Computer Security (pp.33-43). Rome:
Springer-Verlag.

[5] Network Associates, Inc. (1999). The Basics of Cryptography. In An Introduction to
Cryptography (the PGP 6.5.1 documentation) (pp.11-36). Santa Clara, California: Author.

[6] Tanimoto, S. L. (1995). Probabilistic Reasoning. In The Elements of Artificial Intelligence
Using Common Lisp (pp.329-374). New York: Computer Science Press.



Appendix A: Probabilistic Reasoning

Sometimes it is useful to be able to reason with inexact or uncertain information. One approach to
drawing conclusions from this sort of information is called probabilistic reasoning. Anyone can
offer an opinion on the likelihood that a particular statement is true. The scale used in probabilistic
logic is from 0 to 1, where 0 is definitely false and 1 is definitely true. Although an individual is able
to offer any opinion on the truth of a statement (and therefore any certainty value for that statement),
some statements are true and some are false. Assigning some other value is simply incorrect.
Sometimes it is clear what the probability of a statement is. For example, the probability that a fair
coin will land heads up when tossed is 2. When it is not so easy to assign correct probability values,
any calculations made using them are, at best, only as accurate as the initial values. The truth values

provided by Maurer’s scheme are treated as probability values.

There are two main rules that are used to calculate a probability value from other probability values.
They are used by Maurer and have been defined as follows:

“Let 4 and B be events having probabilities P(4) and P(B) , respectively.
1. Additive Law: P(4 U B) =P(4)+P(B)-P(A4N B).

2. Multiplicative Law: P(4 N B) = P(4)xP(B | A) =P(B)xP(4 | B).
Here P(B| A) is P(Bgiven 4) ...” [6, p.332]

Since Maurer does not assume that an entity knows the probability of P(B|A), he is forced to
assume that all statements are independent so that P(4 N B) = P(A)xP(B). In section 3.3.2, I briefly
discuss the possibility that the independence assumption could be replaced by a method of
calculating the interdependence of any two statements. If this was done, Bayes’ rule could be used
to calculate the trust values in an interdependent variation of Maurer’s trust model. Bayes’ rule is:

P(E | H)P(H)

“P(H | E) = PE)

where

P(E) = P(E | H)P(H) + P(E | =H)P(—~H)” [6, p.333]

The additive law, the multiplicative law and Bayes’ rules all work with probabilities that are assumed

to sum to one. Symbolically, P(H)+P(—H)=1. There are other scales of probability that need not

sum to one [6, p.330] but Maurer does not consider these.



